

***Argulus coregoni* (Crustacea: Branchiura: Argulidae) Parasitic on a Dark Chub *Nipponocypris temminckii* (Cypriniformes: Xenocypriidae) in a Stream, Central Japan, with a List of Its Known Hosts in East Asia**

Kazuya Nagasawa^{1,2,4}, Ryu Uchiyama², and Ko Tomikawa³

¹ Graduate School of Integrated Sciences for Life, Hiroshima University,
1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan

E-mail: ornatus@hiroshima-u.ac.jp

² Aquaparasitology Laboratory, 365-61 Kusanagi, Shizuoka 424-0886, Japan

³ Graduate School of Humanities and Social Sciences, Hiroshima University,
1-1-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8524, Japan

⁴ Corresponding author

(Received 24 January 2024; Accepted 17 May 2024)

An adult male specimen of *Argulus coregoni* Thorell, 1864 was collected from the body surface of a dark chub *Nipponocypris temminckii* (Temminck and Schlegel, 1846) at 15 m elevation in a small stream in central Japan. The specimen collected is herein described and corresponds well to the descriptions of *A. coregoni* from European and East Asian countries. This represents the first record for *A. coregoni* from a fish of the cypriniform family Xenocypriidae in Japan, where this species usually occurs in higher-elevation mountain streams and infects fishes in two salmoniform families (Salmonidae and Plecoglossidae). The male of *A. coregoni* is characterized by the presence of two protrusions adorned with small spines and a digitiform projection on the ventro- and dorsoposterior margins, respectively, of the coxa of the second leg and the abdominal lobes have pointed posterior ends. In addition to these morphological characters, the number of plumose setae on the posterior margin of the coxa of the first leg and the number of supporting rods in the sucker membrane of the first maxilla are useful for distinguishing *A. coregoni* from a morphologically similar congeneric species, *A. japonicus* Thiele, 1900, which parasitizes cypriniform fishes in Japan. Based on literature published between 1936 and 2023, this paper also gives a list of the hosts of *A. coregoni* reported from East Asia, including the Russian Far East, China, Malaysia, and Japan. To date, 31 species and three subspecies of fishes are known as hosts of this parasite in East Asia, and these fishes belong to 16 families and eight orders, which indicates that the species is not a host-specific parasite. In order to further understand the host utilization of *A. coregoni* in Japan, it is necessary to study its occurrence on fishes of various taxonomic groups in rivers of different lengths.

Key Words: parasitic crustacean, fish louse, redescription, host utilization, host list, new host record.

Introduction

Argulus coregoni Thorell, 1864 is one of the crustacean parasites found on freshwater fishes in Europe and Asia (Neethling and Avenant-Oldewage 2016). In Japan, Tokioka (1936) reported this species for the first time, and it has so far been documented mainly from salmoniform fishes belonging to two families (Salmonidae and Plecoglossidae). Because of its importance as a pathogen in fisheries and aquaculture of these fishes, various aspects of the biology of *A. coregoni* have been studied, such as the geographical distribution (summarized by Nagasawa and Yuasa 2020: fig. 3), egg deposition (Shimura and Egusa 1980), larval development (Shimura 1981), seasonal occurrence (Shimura 1983a), and impacts on host fishes (Shimura et al. 1983a, b; Shimura and Inoue 1984; Katahira et al. 2021). However, in Japan, *A. coregoni* has also been reported from non-salmoniform fishes, which are placed in three families and three orders, and they are: bitterlings *Acheilognathus* sp. and

Tanakia limbata (Temminck and Schlegel, 1846) (Cypriniformes: Acheilognathidae) [Tokioka 1936; Nagasawa and Taniguchi 2021; see Goda et al. (2017) for the scientific name of the host reported by Tokioka (1936)]; fluvial dark sleeper *Odontobutis hikimius* Iwata and Sakai, 2002 (Gobiiformes: Odontobutidae) (Nagasaki et al. 2014); and torrent catfish *Liobagrus reinii* Hilgendorf, 1878 (Siluriformes: Amblycipitidae) (Nagasaki and Ishikawa 2015). Little is known about the biology of *A. coregoni* infecting these non-salmoniform fishes in Japan.

Recently, we collected an adult male specimen of *A. coregoni* from a dark chub *Nipponocypris temminckii* (Temminck and Schlegel, 1846) (Cypriniformes: Xenocypriidae) in a small stream in central Japan. This represents the first record for *A. coregoni* from the cypriniform family Xenocypriidae in Japan. However, a congeneric species, *A. japonicus* Thiele, 1900 has been reported from 11 species of cypriniform fishes in Japan, comprising five species of the Xenocypriidae [lakeweed chub *Ischikauia steenackeri* (Sauvage, 1883); freshwater minnow *Opsariichthys platy-*

pus (Temminck and Schlegel, 1846); three-lips *Op. uncirostris uncirostris* (Temminck and Schlegel, 1846); silver carp *Hopophthalmichthys molitrix* (Valenciennes, 1844); and bighead carp *Hy. nobilis* (Richardson, 1845)] (e.g., Kimura 1970; Nagasawa 2009, 2011, 2017a, 2023a; Nagasawa and Sato 2014; Nagasawa and Miyajima 2018; Nagasawa et al. 2018a, 2021a, 2023a), one species of the Acheilognathidae [rosy bitterling *Rhodeus ocellatus* (Kner, 1866)] (Yamauchi and Shimizu 2013; Nagasawa et al. 2024a), one species of the Leuciscidae [big-scaled redfin *Pseudaspius hakonensis* (Günther, 1877)] (Nagasawa et al. 2024b), and four species of the Cyprinidae (common carp *Cyprinus carpio* Linnaeus, 1758; goldfish *Carassius auratus* Linnaeus, 1758; Japanese white crucian carp *Car. cuvieri* Temminck and Schlegel, 1846; and silver crucian carp *Carassius* sp.) (e.g., Nakazawa 1914; Tokioka 1936; Yamaguti 1937; Kimura 1970; Takeda et al. 2000; Nagasawa et al. 2009, 2012, 2013, 2023b; Nagasawa and Nagai 2023). This indicates that Japanese cypriniform fishes are more often utilized by *A. japonicus* than *A. coregoni*, and Tokioka (1965) stated that both species of *Argulus* O. F. Müller, 1785 are morphologically very similar. Moreover, Nagasawa and Taniguchi (2021) mentioned that it is not easy to differentiate *A. coregoni* from *A. japonicus* by their gross morphology and, for accurate, reliable species identification, it is necessary to examine other characters, such as the number of plumose setae on legs and that of supporting rods in the first maxillae. Thus, when argulid specimens are collected from cypriniform fishes in Japan, it is important to carefully identify them based on several morphological characters. However, *A. coregoni* infecting Japanese cypriniform fishes has so far been poorly studied for its morphology, and there are two descriptions of the species only from bitterlings (Acheilognathidae) (Tokioka 1936; Nagasawa and Taniguchi 2021).

Based on this background, we report on the morphology of *A. coregoni* using the male specimen from the xenocypridid fish (dark chub) and mention the necessity for future research to assess the importance of non-salmoniform fishes as hosts of this parasite in Japan. Dark chub represents a new host record for *A. coregoni*, and based on litera-

ture published between 1936 and 2023, a list is given of the known hosts of this parasite in East Asia.

Materials and Methods

About 100 individuals of dark chub were collected with a plastic bottle trap in the middle reaches of the Takase River (ca. 5 m river width, ca. 1 m water depth, 15 m elevation; Fig. 1A) at Tsuzurafuchi in Shirahama, Wakayama Prefecture, central Japan, on 21 September 2021. This river is a short stream (ca. 7.7 km length) and joins the Tonda River which drains downstream at 0.2 km into the western North Pacific Ocean. Soon after capture, these fish were transported alive to a tank at the second author's house, and one of them (ca. 70 mm total length) was found to be infected with a crustacean parasite on the dorsal body surface (Fig. 1B). This parasite was carefully taken from the fish, fixed, and then preserved in 70% ethanol. Later, at the Aquaparasitology Laboratory, Shizuoka Prefecture, the specimen was examined using an Olympus SZX10 stereo microscope and an Olympus BX51 phase-contrast compound microscope. It was cleared in lactophenol and observed using the wooden slide procedure (Humes and Gooding 1964; Benz and Otting 1996). All drawings were made with the aid of drawing tubes attached to the microscopes. Morphological terminology follows Benz et al. (1995) and Benz and Otting (1996).

Data on the elevation (m) at the collection sites reported in this and previous papers (Nagasawa and Taniguchi 2021) were obtained from a GSI map (<https://maps.gsi.go.jp/>) provided by the Geospatial Information Authority of Japan. The scientific names of fishes from Japan and other countries mentioned in this paper follow Motomura (2023) and Froese and Pauly (2023), respectively. The order and family, to which each fish species belongs, is based on Froese and Pauly (2023). The specimen of *A. coregoni* has been deposited in the Crustacea collection of the National Museum of Nature and Science, Tsukuba, Ibaraki Prefecture, Japan (NSMT-Cr).

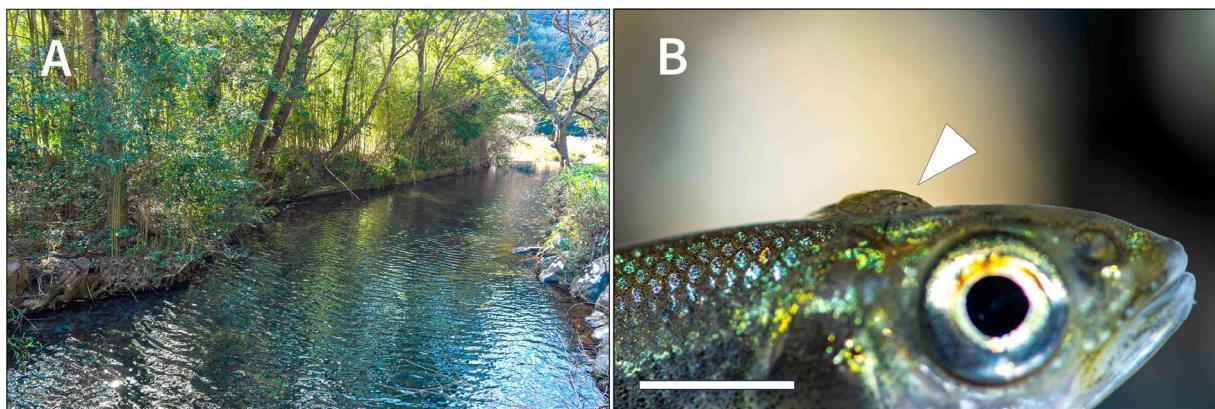


Fig. 1. *Argulus coregoni* and its collection site. A, Middle reaches of the Takase River where dark chub were collected; B, a dark chub (ca. 70 mm total length) infected with an adult male of *A. coregoni* (arrowhead) on the dorsal body surface at the boundary between the head and trunk. Scale bar: 5 mm.

Results

Argulus coregoni Thorell, 1864

[Japanese name: Chou-modoki (Tokioka 1965)]
(Figs 1B, 2–5)

Material examined. One adult male (NSMT-Cr 31596).

Adult male. Body dorsoventrally flattened, measuring 4.2 mm in total length (from anterior tip of carapace to posterior tip of abdomen) and 2.5 mm in maximum body width (around midlength of carapace).

Carapace (including posterolateral lobes) nearly circular, covering totally or almost totally coxa and basis of first to third pairs of legs and partially fourth pair of legs in dorsal view; 3.0 mm long, comprising 71.4% of total length (Figs 2, 5). Frontal region of carapace delimited by anterolateral indentations and protruding anteriorly; anterior margin rounded. Central longitudinal ribs distinct and bifurcated at anterior ends; transverse ribs evident behind nauplius eye (Fig. 2A). Paired compound eyes well visible, dorsally located at level of anterolateral indentations of carapace (Fig. 2A). Nauplius eye located posterior to compound eyes in midline of carapace. Dorsal surface of carapace smooth without spines. Ventral surface of frontal and anterolateral regions of carapace ornamented with numerous, small posteriorly directed spines (Fig. 2B). Posterolateral lobes of carapace not overlapping, ending in rounded margin, separated by sinus 26.7% as long as carapace (Fig. 2A). Respiratory areas located at level between second maxillae and third

pairs of legs; smaller anterior area nearly oval, located near anterior margin of posterior area; larger posterior area kidney-shaped, with notch on mesial margin (Figs 2B, 3A, 5). **Thorax** with four segments, bearing small spiniform projections ventrally (Figs 2, 5). **Abdomen** longer than wide, with some, very small spines on anterolateral margins; anal indentation 44.4% as long as abdomen to form two lobes; each lobe becoming wider toward mid-length of abdomen, then tapering posteriorly, ending in pointed margin (Figs 2, 5). Paired testes each elliptical, located in anterocentral portion of abdomen, extending past base of anal indentation (Figs 2, 5). Caudal rami located at base of anal indentation, with four naked setae on posterior margin of each ramus (Figs 2A, 3B).

First antennae with four segments (Fig. 3C, D): first segment heavily sclerotized in mesial and posterior regions, with large blunt projection on posterior margin; second segment largest and heavily sclerotized, with large blunt projection on anterior margin, strong lateroventrally directed hook at distal corner, and large projection ventrally near posterior margin; third segment cylindrical, with three naked setae; apical segment shorter than third segment, with four and two naked setae near and at tip, respectively. **Second antennae** with five segments (Fig. 3C, E): first segment sclerotized, with large blunt projection and small swelling bearing six naked setae on posterior margin, and small spine near distal margin; second segment shorter than first, armed with four naked setae on posterior margin and three naked setae near distal margin; third, fourth, and apical segments nearly cylindrical and decreasing in length;

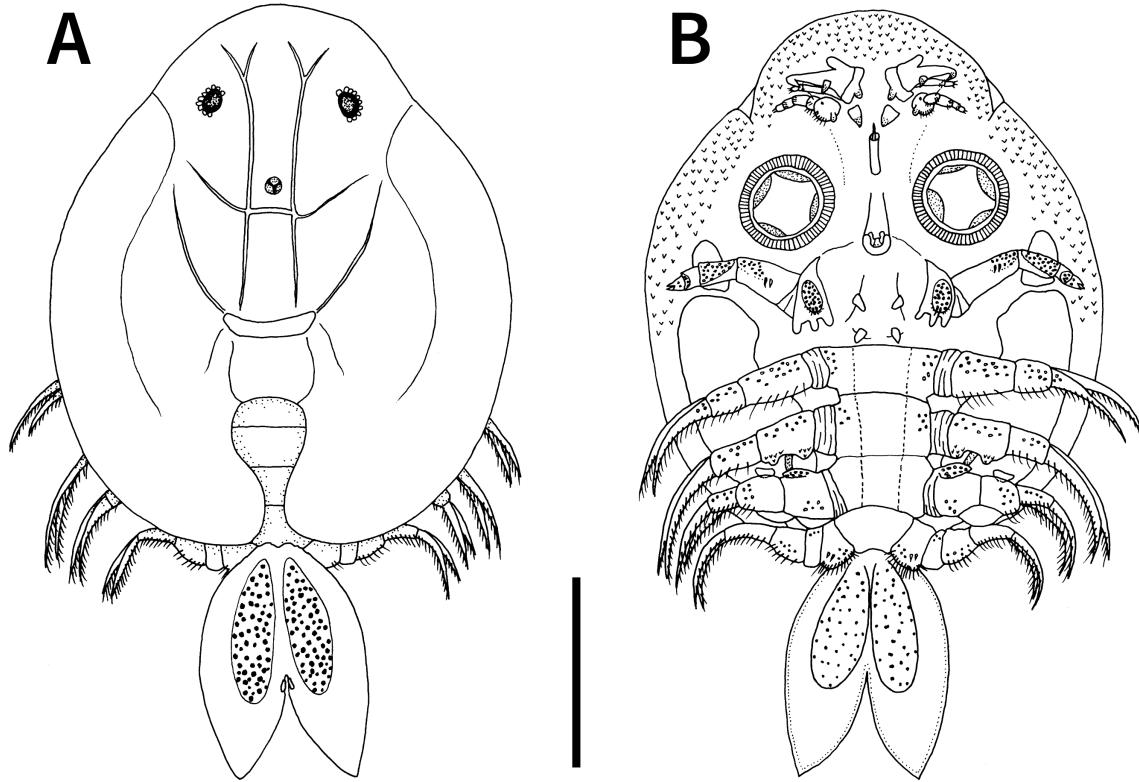


Fig. 2. *Argulus coregoni*, adult male, NSMT-Cr 31596. A, Habitus, dorsal view; B, habitus, ventral view. Scale bar: 1 mm.

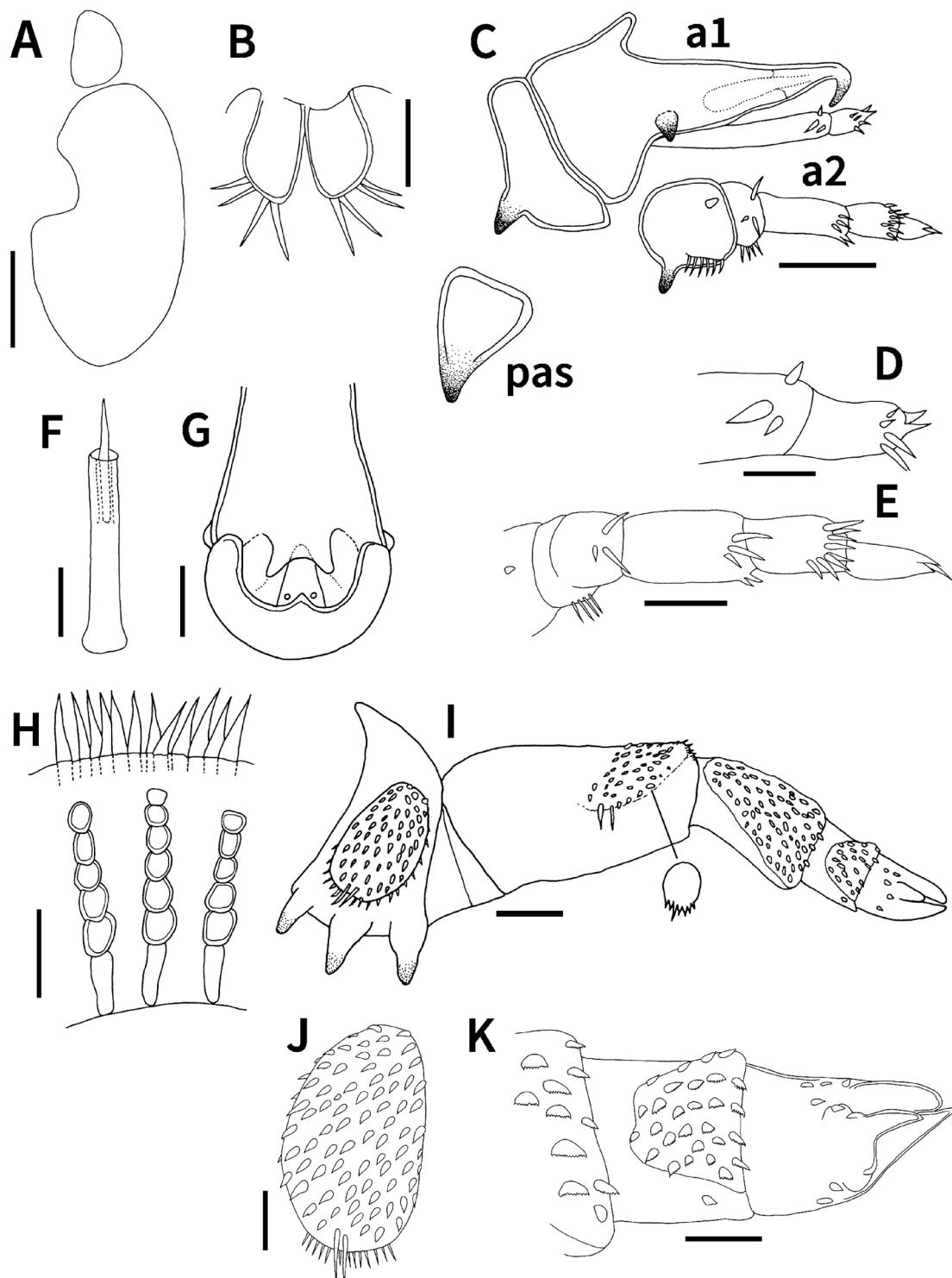


Fig. 3. *Argulus coregoni*, adult male, NSMT-Cr 31596. A, Respiratory areas, ventral view; B, caudal rami, ventral view; C, first antenna (a1), second antenna (a2), and postantennal spine (pas), ventral view; D, third and apical segments of first antenna, ventral view; E, second, third, fourth, and apical segments of second antenna, ventral view; F, preoral sheath and stylet, ventral view; G, mouth tube, ventral view; H, three anterior supporting rods and marginal projections from rim of first maxilla sucker, ventral view; I, second maxilla and denticle (enlarged) on second segment, ventral view; J, raised field on first segment of second maxilla, ventral view; K, third, fourth, and terminal segments of second maxilla, ventral view. Scale bars: A, 0.2 mm; B, E-G, J, K, 0.05 mm; C, I, 0.1 mm; D, H, 0.03 mm.

third segment with three naked and two short naked setae near distal margin; fourth segment with eight naked setae near distal margin; apical segment with three naked setae at tip. Postantennal spines large and robust, each located posterior to projection of first segment of first antenna (Fig.

3C). Preoral sheath cylindrical and visible on ventral midline of carapace posterior to postantennal spines; anterior portion of stylet protruding from opening of preoral sheath (Figs 2B, 3F). Mouth tube without ornamentation located posterior to preoral sheath, becoming wider posteriorly;

posterior portion composed of anterior labrum and posterior labium bearing pair of tiny spines (Figs 2B, 3G).

First maxillae forming well developed cup-like suckers (Fig. 2B), each with 60 supporting rods in sucker membrane. Supporting rods each composed of six or seven sclerites; sclerites at base nearly oblong but others oval or slightly trapezoidal and decreasing in size distally (Fig. 3H). Outer margin of rim of sucker membrane ornamented with numerous apically pointed projections. *Second maxillae* with five segments (Fig. 3I): first segment robust, with three large, blunt, almost equally long projections on posterior margin; corpus of first segment with raised oval field bearing many denticles plus two long and 14 shorter naked setae near and on posterior margin, respectively (Fig. 3J); second segment longer than first, with two long naked setae and denticles (some with serrated margin) on distal portion of anteroventral surface (Fig. 3I); third segment shorter and narrower than second segment, with field bearing many denticles with serrated margin on anteroventral surface; fourth segment subquadrate, with small field bearing denticles with serrated margin; terminal segment shortest with several denticles, ending in three projections (one is blunt and two are pointed apically) (Fig. 3K). Accessory spines near ventral midline, each located slightly apart from first segment of second maxilla (Fig. 2B). Postmaxillary spines small, each located anterior to first segment of thorax (Fig. 2B).

First to fourth pairs of legs (Fig. 4) biramous with sympods two-segmented, each composed of coxa and basis; rami each consisting of exopod and endopod; sympods and rami of first to fourth legs ventrally covered with small, simple cuticular scales; rami bearing two rows of plumose setae each near ventro- or dorsoposterior margin; first and second pairs of legs each possessing flagellum projecting from base of exopod. *First leg* (Fig. 4A, B) coxa bearing six plumose setae near ventroposterior margin; basis nearly half as wide as coxa, bearing four plumose setae near ventroposterior margin; exopod unsegmented, with 16 ventral plumose setae; endopod three-segmented, proximal segment long, with 12 ventral plumose setae and one short naked seta, middle segment much shorter than proximal segment, and terminal segment tapering distally, ending in two short spines; flagellum extending to proximal margin of coxa, with 17 plumose setae on ventroposterior margin. *Second leg* (Fig. 4C, D) coxa with two protrusions adorned with small, apically truncated spines on ventroposterior margin and posteriorly directed digitiform projection on dorsoposterior margin; basis slightly shorter than coxa, bearing four plumose setae near ventroposterior margin; exopod and endopod unsegmented, with two rows of plumose setae (15 and 17 ventral setae on exopod and endopod, respectively); flagellum extending to proximal margin of coxa, with 16 plumose setae on ventroposterior margin. *Third leg* (Fig. 4E, F) coxa with irregularly shaped, raised fields adorned with denticles on anterior and dorsal surface; basis slightly shorter than coxa, bearing raised disk-shaped field covered with denticles on anterior surface and three plumose setae near ventroposterior margin; large swelling (= socket) present on posterior margin of coxa and basis; exopod unsegmented,

with 21 plumose setae near ventroposterior margin; endopod two-segmented, proximal segment with seven plumose setae near ventroposterior margin, terminal segment with nine plumose setae near ventroposterior margin. *Fourth leg* (Fig. 4G, H) coxa forming natatory lobe, bearing 15 plumose setae on posterior margin and two short naked setae near ventroposterior margin; basis with peg on anterior margin and six plumose setae on posterior distal margin; peg bearing pair of triangular-shaped processes on anterodistal surface and ending in three spines (one heavily ornamented with minute processes); exopod unsegmented, bearing 17 plumose setae near ventroposterior margin; endopod two-segmented, proximal segment with seven plumose setae near ventroposterior margin and short naked seta near posterodistal corner, and terminal segment with nine plumose setae near ventroposterior margin.

Color. When fresh, body almost transparent; compound eyes and naupliar eye dark brown; respiratory areas fringed by dark brown pigment; central portion of third segment of trunk black; black spots scattered on pale-yellow testes (Fig. 5A). In 70% ethanol (the specimen was fixed on 21 September 2021 and observed on 20 July 2022), body white; compound eyes and naupliar eye black; outline of respiratory areas recognized ventrally by dark brown pigment; black spots scattered on pale-yellow testes (Fig. 5B, C).

Host. Dark chub *Nipponocypris temminckii* (Cypriniformes: Xenocyprididae).

Attachment site. Dorsal body surface at the boundary between the head and trunk (Fig. 1B). The individual of *A. coregoni* was found to be oriented anteriorly.

Locality. The middle reaches of the Takase River (33°39'04"N, 135°25'14"E, 15 m elevation; Fig. 1B), a tributary of the Tonda River, at Tsuzurafuchi in Shirahama, Wakayama Prefecture, central Japan.

Remarks. *Argulus coregoni* was originally described by Thorell (1864) based on specimens collected from three species of salmonids, i.e., European whitefish *Coregonus lavaretus* (Linnaeus, 1758) (reported as *Coregono lavareto*), grayling *Thymallus thymallus* (Linnaeus, 1758) (as *Thymallo vulgaris*), and sea trout *Salmo trutta* Linnaeus, 1758 (as *Salmo trutta*), in Sweden. This parasite has since been reported from European countries, including Sweden (Thorell 1866), Norway (Økland 1985; Bristow 1993; Dolven 2020), Finland (e.g., Pasternak et al. 2004; Mikheev et al. 2007, 2015; Bandilla et al. 2008; Hakalahti-Sirén et al. 2008), Russia (Markevich 1937; Gusev 1987), Poland (Penczak 1972), the Czech Republic and the Slovak Republic (Romanovoský 1955; Moravec 2001), Germany (Wagler 1935; Stammer 1959), France (Roland 1963), and the U.K. (Martin 1932; Gurney 1948; Rizvi 1969; Campbell 1971; Fryer 1982; Taylor et al. 2006). The species is also known to occur in East Asia, including the Russian Far East (Markevich 1937; Dogiel and Akhmerov 1952; Smirnova 1971; Gusev 1987; Ermolenko and Kazachenko 1989; Ermolenko 1992, 2004a, b; Sokolov et al. 2012), China (Wang 1958, 1964; Yin 1962; Chen 1973; Ding 1977; Song and Kuang 1980; Kuang and Qian 1991; Zang and Ma 1994; Yue et al. 1997; Wadeh et al. 2008), Malaysia (Everts and Avenant-Oldewage 2009), and Japan

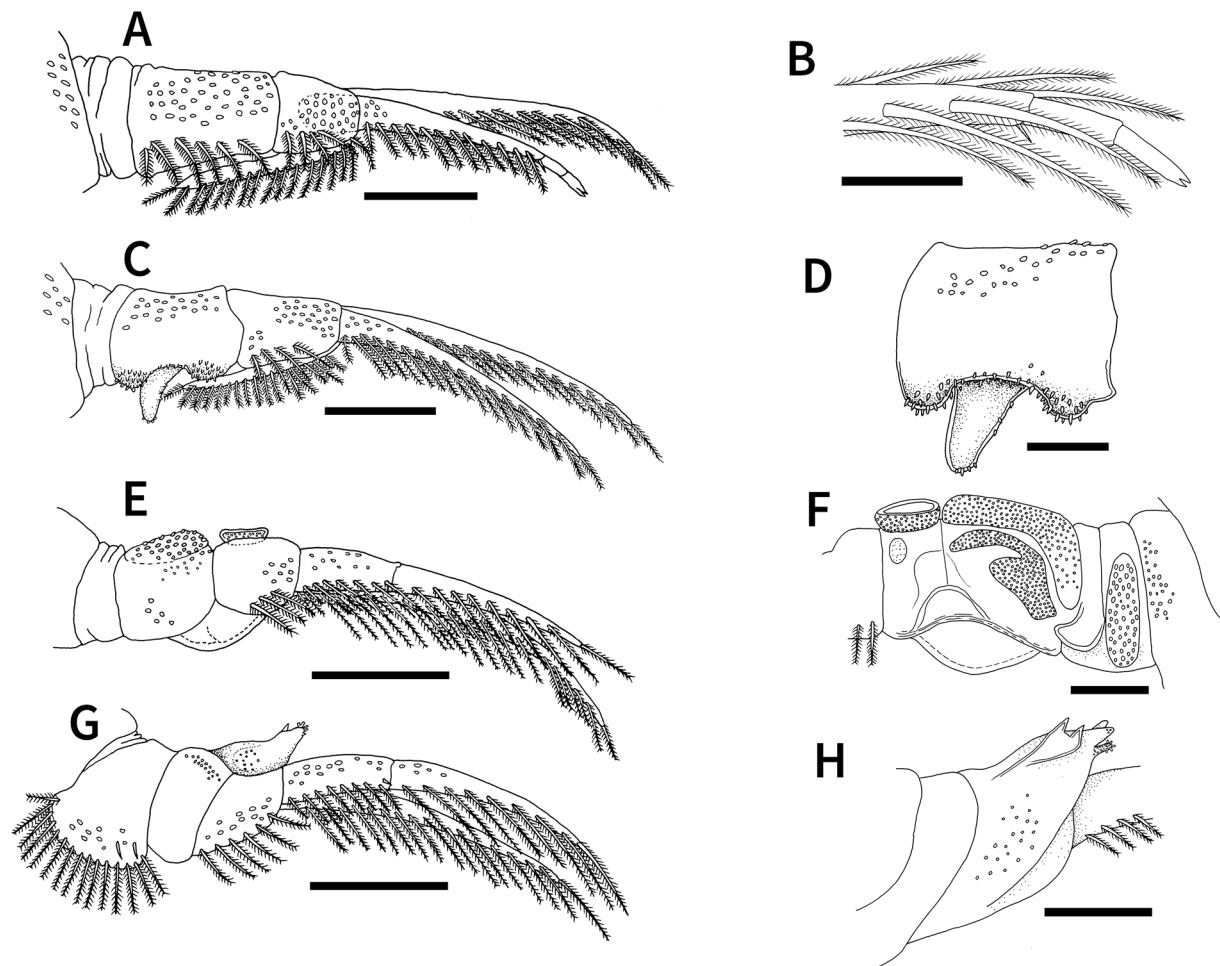


Fig. 4. *Argulus coregoni*, adult male, NSMT-Cr 31596. A, First leg, ventral view; B, distal part of endopod of first leg, ventral view; C, second leg, ventral view; D, coxa of second leg, ventral view; E, third leg, ventral view; F, coxa, base, and part of exopod of third leg, dorsal view; G, fourth leg, ventral view, H, base (with peg) and part of endopod of fourth leg, anteroventral view. Scale bars: A, C, E, G, 0.3 mm; B, D, F, H, 0.1 mm.



Fig. 5. *Argulus coregoni*, adult male, NSMT-Cr 31596. A, Habitus, fresh specimen, dorsal view; B, C, habitus, ethanol-preserved specimen, dorsal and ventral views, respectively. The specimen was fixed in 70% ethanol on 21 September 2021 and photographed on 20 July 2022. Scale bars: 1 mm.

(see below). Moreover, *A. coregoni* was reported from India (Saha and Bandyopadhyay 2015; Khwaja and Tripathi 2022) and Pakistan (Khan et al. 2017), South Asia, and from Iran (Mousavi et al. 2011), West Asia, but since its morphology was not studied in detail, a reassessment of the identification of the species from these countries is necessary.

In Japan, *A. coregoni* has been described mainly from specimens taken from fishes in the two salmoniform families (Salmonidae and Plecoglossidae) (Yamaguti 1937; Hoshina 1950). Yamaguti (1937) described a new species (*Argulus plecoglossi* Yamaguti, 1937) from ayu *Plecoglossus altivelis altivelis* (Temminck and Schlegel, 1846) (Plecoglossidae), but it has been regarded as a junior synonym of *A. coregoni* (Tokioka 1965; Shimura 1981: 347). In contrast to this, there is limited information on the morphology of *A. coregoni* from cypriniform fishes, and its specimens have only been collected from bitterlings (Acheilognathidae) (Tokioka 1936; Nagasawa and Taniguchi 2021).

The morphological characters of the specimen collected from dark chub (*Xenocyprididae*) in this study corresponds to the descriptions of the male of *A. coregoni* from European countries (Thorell 1864; Thiele 1904; Gurney 1948; Romanovoský 1955; Stammer 1959; Roland 1963; Penczak 1972; Fryer 1982), China (Wang 1958; Chen 1973; Kuang and Qian 1991), Malaysia (Everts and Avenant-Oldewage 2009), and Japan (Tokioka 1936; Yamaguti 1937; Hoshina 1950), and the specimen is thus identified as *A. coregoni*. The male of this species is characterized by the presence of two protrusions adorned with small spines and a digitiform projection on the ventro- and dorsoposterior margins, respectively, of the coxa of the second leg (Fig. 4C, D) and the abdominal lobes have pointed posterior ends (Figs 2, 5). These characters were clearly recognizable in the original description of *A. coregoni* (Thorell 1864: figs 2, 10, 15). Regarding the dorsal digitiform projection, Tokioka (1936: fig. 3) reported that it is “very long” and actually illustrated a long projection, which is similar to that of our specimen (Fig. 4D). The Chinese specimens have also a similar long dorsal projection (Chen 1973: fig. 216; Kuang and Qian 1991: fig. 98D). Nevertheless, there are some variations in the second leg morphology between the specimens reported in other regions. In the European specimens, a well-developed dorsal projection was recognized by Thiele (1904: fig. 86), Romanovoský (1955: fig. 32) and Penczak (1972: fig. 13) but not by Fryer (1982: fig. 92). Roland (1963: fig. 6A, B) illustrated only two protrusions. The Malaysian specimens have a short dorsal projection and two ventral protrusions (reported as projections) of different sizes (Everts and Avenant-Oldewage 2009: fig. 10).

Although only one male specimen of *A. coregoni* was collected in this study, there are several morphological differences between the sexes of the species. The male has accessory copulatory structures, i.e., two protrusions and a digitiform projection on the coxa of the second leg, a large swelling (= socket) on the coxa and basis of the third leg, and the peg on the basis of the fourth leg (Fig. 4C–H), all of which are not present in the female (Nagasawa 2021: fig. 2). In addition, black spots are found on the surface of the tes-

tes (Figs 2, 5; Thorell 1864: fig. 2; Hoshina 1950: fig. 1A; Romanovoský 1955: fig. 35; Roland 1963: fig. 2; Penczak 1972: fig. 2; Nagasawa and Kawai 2008: fig. 1).

The flagella are known to project each from the extreme proximal part of the exopod of both the first and second pairs of legs in branchiurans of the genus *Argulus* (Boxshall and Jaume 2009). In this study, we have confirmed that the flagella project at the base of the exopod of the first and second legs in *A. coregoni* (Fig. 4A, C). In Japan, such flagella have been reported from three other congeneric species, i.e., *A. japonicus* (Nagasawa 2021), *A. mongolianus* Tokioka, 1939 (Nagasawa et al. 2022a), and *A. nobilis* Thiele, 1904 (Nagasawa 2023b).

In this study, we collected the specimen of *A. coregoni* from dark chub (*N. temminckii*) in a stream in Wakayama Prefecture, central Japan. Dark chub is distributed in central and western Japan and the southwestern region of the Korean Peninsula (Hosoya 2015), but there is no record of *A. coregoni* from this fish species elsewhere in Japan or in Korea. Thus, dark chub is herein regarded as a new host of *A. coregoni*. There are five previous records of this parasite from Wakayama Prefecture, where it infects red-spotted masu salmon *Oncorhynchus masou ishikawai* Jordan and McGregor, 1925 [reported as *Salmo (On.) masou macrostomus* (Günther, 1877)] in the Hiki River near the Takase River (Takegami 1984) and also reared red-spotted masu salmon (reported as *On. mas. ishikawai*), rainbow trout *On. mykiss* (Walbaum, 1792) (reported as *Salmo irideus* Gibbons, 1855), and ayu *Pl. a. altivelis* (reported as *Pl. altivelis*) (Hoshina 1950; Nagasawa and Ohya 1996a, b; Kaji et al. 2011).

The specimen of *A. coregoni* was found attached on the dorsal body surface at the boundary between the head and trunk of the dark chub (Fig. 1B). A similar attachment site was also reported in the same species of parasite infecting oily bitterling *Tan. limbata* from the Asahi River, Okayama Prefecture (Nagasawa and Taniguchi 2021: fig. 1). This may indicate that, in these cypriniform fishes, the anterior, dorsal body surface is commonly used by *A. coregoni* as its attachment site. Nonetheless, in salmonids inhabiting mountains streams in central Japan, this parasite is also found on the lateral body surface under and near the pectoral fins (Nagasawa et al. 2022b). This use of the pectoral fin area by *A. coregoni* may be associated with the hosts’ habitat. Because salmonids usually occur in fast-flowing streams, it has been inferred that this parasite uses such an area as a shelter to lessen the chance of being detached from the host (Shimura 1983a; Nagasawa et al. 2022b).

As stated above, the male of *A. coregoni* examined in this study has a posteriorly directed digitiform projection on the dorsoposterior margin of the coxa of the second leg (Fig. 4C, D). Despite its size variation, a similar projection has been recognized in the male of the species in Europe and East Asia, and it is regarded as the morphological feature that characterizes *A. coregoni*. In contrast, the male of *A. japonicus* is morphologically similar to *A. coregoni* but has no such digitiform projection (Tokioka 1936: fig. 2; Yamaguti 1937: fig. 8; Chen 1973: fig. 194; Fryer 1982: fig. 94; Kuang

and Qian 1991: fig. 100D). Thus, the presence or absence of the digitiform projection on the second leg can be used in identification of males of these congeneric species.

In addition, for identification of both sexes of *A. coregoni* and *A. japonicus*, the number of plumose setae on the posterior margin of the coxa of the first leg and the number of supporting rods in sucker membrane of the first maxilla are useful (Nagasawa and Taniguchi 2021). Based on observations in Japan, the number of plumose setae ranges from four to nine in *A. coregoni* [four to seven in Yamaguti (1937); four to nine in Hoshina (1950); six in Nagasawa and Taniguchi (2021); six in this study], whereas it is constantly one in *A. japonicus* (Yamaguti 1937; Nagasawa 2021). The number of supporting rods per first maxilla is usually 60 or more in *A. coregoni* [ca. 60 in Tokioka (1936); 60–70 in Yamaguti (1937); 54–73 in Hoshina (1950); 67 and 72 in Nagasawa and Taniguchi (2021); 60 in this study], but it ranges from 40 to 52 in *A. japonicus* [ca. 50 in Tokioka (1936); 40–50 in Yamaguti (1937); 50 and 52 in Nagasawa (2021)]. A similar difference in the number of supporting rods per first maxilla between the two species has been reported from China as well [64 and 71 (Wang 1958) and 68 (Chen 1973; Kuang and Qian 1991) in *A. coregoni*; 50 (Wang 1958) and 43–46 (Chen 1973; Kuang and Qian 1991) in *A. japonicus*]. The Malaysian specimens of *A. coregoni* have ca.

62 supporting rods (Everts and Avenant-Oldewage 2009).

There is a paper on argulid branchiuran identified as “*A. japonicus*” from Malaysia (Seng 1986), but its leg structure does not correspond to that of *A. japonicus*. The Malaysian specimens had seven setae on the posterior margin of the coxa of the first leg and three protrusions (reported as knobs, two are ventral but one is dorsal) on the posterior margin of the coxa of the second leg (Seng 1986: figs 18, 20). As stated above, these characters are identical to the leg morphology of *A. coregoni*. When Everts and Avenant-Oldewage (2009) later reported *A. coregoni* as a new country record from Malaysia, they did not mention that the species had been misidentified before. Seng (1986) suggests that *A. coregoni* (reported as *A. japonicus*) has been widely spread in Malaysia.

Discussion

Recently, we have conducted a study on the longitudinal distribution patterns of *A. coregoni* in rivers in Gifu and Shiga prefectures, central Japan (Nagasawa et al. 2022b; Nagasawa 2023c). The surveyed rivers were large ones that originate from high-elevation mountain areas and drain into the seas or Lake Biwa (the largest lake in Japan), and

Table 1. Hosts of *Argulus coregoni* reported in the Russian Far East. The classification scheme and scientific names of fishes are adopted from Froese and Pauly (2023). Fishes are alphabetically arranged in each family.

Host			Locality		Reference
Order	Family	Species	Province	Site	
Salmoniformes	Salmonidae	<i>Hucho taimen</i>	Amur Oblast and Khabarovsk Krai	Amur River basin (including the Zeya River and Lake Khivanda)	Smirnova (1971)
		<i>Oncorhynchus gorbuscha</i>	Khabarovsk Krai	Amur River basin (Lake Udry)	Dogiel and Akhmerov (1952)
		<i>Oncorhynchus keta</i>	Khabarovsk Krai	Amur River basin (Lake Udry)	Dogiel and Akhmerov (1952)
Cypriniformes	Cyprinidae	<i>Carassius gibelio</i>	Amur Oblast and Khabarovsk Krai	Amuri River basin (including the Zeya River and Lake Khivanda)	Smirnova (1971) (as <i>Car. auratus gibelio</i>)
		<i>Cyprinus carpio</i>	Amur Oblast and Khabarovsk Krai	Amur River basin (including the Zeya River and Lake Khivanda)	Smirnova (1971) (as <i>Cy. haematopterus</i>)
		<i>Cyprinus</i> sp.	Khabarovsk Krai	Amur River basin	Dogiel and Akhmerov (1952)
	Gobionidae	<i>Gobio soldatovi</i>	Khabarovsk Krai	Amur River basin	Dogiel and Akhmerov (1952) (as <i>Go. gobio</i>)
			Sakhalin	Sweet Lake	Sokolov et al. (2012)
Nemacheilidae		<i>Pseudorasbora parva</i>	Primorsky Krai	Razdolnaya River basin	Ermolenko and Kazachenko (1989)
				—*	Ermolenko (1992)
		<i>Barbatula toni</i>	Primorsky Krai	Razdolnaya River basin	Ermolenko (2004a) (as <i>Nemachilis barbatus toni</i>)
Siluriformes	Siluridae	<i>Silurus asotus</i>	Amur Oblast and Khabarovsk Krai	Amur River basin (including the Zeya River and Lake Khivanda)	Smirnova (1971) (as <i>Parasilurus asotus</i>)
	Bagridae	<i>Tachysurus fulvidraco</i>	Sakhalin	Sweet Lake	Sokolov et al. (2012)
Esociformes	Esocidae	<i>Esox reicherti</i>	Khabarovsk Krai	Amur River basin	Dogiel and Akhmerov (1952) (as <i>E. reicherti</i>)
			Sakhalin	Sweet Lake	Sokolov et al. (2012)
Gobiiformes	Odontobutidae	<i>Percottus glenii</i>	Primorsky Krai	Razdolnaya River basin	Ermolenko and Kazachenko (1989) (as <i>Pe. glehni</i>), Ermolenko (2004b) (as <i>Pe. glehni</i>)
				Bolshoe Mramornoe Lake	Ermolenko and Kazachenko (1989) (as <i>Pe. glehni</i>), Ermolenko (2004b)
				—	Ermolenko (1992) (as <i>Pe. glehni</i>)
Unknown	Unknown	Unknown	Unknown	Amur River basin	Markevich (1937)

* Not reported.

we have revealed that salmonids and ayu serve as important hosts for *A. coregoni* in the upper and middle-lower reaches of rivers, respectively. However, the fish fauna in Japanese rivers, especially those in central and western Japan, does not consist of only salmonids and ayu but also fish species belonging to other taxonomic groups and, in particular, cypriniform fishes are abundant in the middle and lower reaches (e.g., Matsumiya et al. 2001; Hirayama and Nakagoshi 2003; Nitta et al. 2014; Ishizaki et al. 2016), and the number of fish species per river is affected by the river

length (e.g., Hirayama and Nakagoshi 2003). Moreover, as stated in the Introduction, *A. coregoni* has been reported from non-salmoniform fishes (those belonging to three orders: Cypriniformes, Gobiiformes, and Siluriformes) as well. Therefore, in order to further understand the host utilization of *A. coregoni* in Japanese rivers, it is important to study its occurrence on fishes of various taxonomic groups in rivers of different lengths.

In this study, we collected *A. coregoni* from a cypriniform fish (dark chub) in the middle reaches of a short stream (the

Table 2. Hosts of *Argulus coregoni* reported in China. The classification scheme and scientific names of fishes are adopted from Froese and Pauly (2023). Fishes are alphabetically arranged in each family.

Host			Locality			Reference
Order	Family	Species	Province	Site		
Acipenseriformes	Acipenseridae	<i>Huso dauricus</i>	—*	—		Kuang and Qian (1991)
Cypriniformes	Cyprinidae	<i>Carassius auratus</i>	Inner Mongolia Sichuan	Ulansuhai Nur Various sites Four sites	Yin (1962) Ding (1977) Zang and Ma (1994)	
		<i>Cyprinus carpio</i>	Inner Mongolia Sichuan	Ulansuhai Nur Various sites Four sites	Yin (1962) Ding (1977) Zang and Ma (1994)	
			—	—		Kuang and Qian (1991)
Xenocypridae		<i>Ctenopharyngodon idella</i>	Xinjiang Uygur Autonomous Region	Two sites	Yue et al. (1997)	
			—	—	Kuang and Qian (1991) (as <i>Ct. idellus</i>)	
		<i>Mylopharyngodon piceus</i>	Jiangsu Sichuan	Suzhou Various sites Four sites	Wang (1958) (as <i>M. aethiops</i>), Wang (1964) Ding (1977) Zang and Ma (1994)	
			—**	—	Song and Kuang (1980)	
			—	—	Kuang and Qian (1991)	
Siluriformes	Siluridae	<i>Silurus asotus</i>	Inner Mongolia	Ulansuhai Nur	Yin (1962) (as <i>Parasilurus asotus</i>)	
			—	—	Kuang and Qian (1991) (as <i>Pa. asotus</i>)	
	Bagridae	<i>Tachysurus fulvidraco</i>	Jiangsu Sichuan	Various sites Four sites	Wang (1964) (as <i>Pseudobagrus fulvidraco</i>) Zang and Ma (1994) (as <i>Ps. fulvidraco</i>)	
		<i>Leiocassis</i> sp.	Jiangsu	Suzhou	Wang (1964)	
Centrarchiformes	Siniperidae	<i>Siniperca chuatsi</i>	Hubei Sichuan	—*** Four sites	Chen (1973) Zang and Ma (1994)	
			—	—	Kuang and Qian (1991)	
Unknown	Unknown	Unknown	Guangdong	—***	Wadeh et al. (2008)	

* Kuang and Qian (1991) stated that *A. coregoni* occurs in Hebei Province, Inner Mongolia, the Yangtze River basin, and southern and southwestern China, but did not show any data on collection localities of each infected fish.

** Song and Kuang (1980) mentioned that *A. coregoni* is widely distributed in southern and northern China.

*** Both Chen (1973) and Wadeh et al. (2008) did not report on collection localities of infected fish.

Table 3. Hosts of *Argulus coregoni* reported in Malaysia. The classification scheme and scientific names of fishes are adopted from Froese and Pauly (2023). Fishes are alphabetically arranged in each family.

Host			Locality			Reference
Order	Family	Species	Province	Site		
Cypriniformes	Xenocypridae	<i>Ctenopharyngodon idella</i>	Malacca	Freshwater Fisheries Research Station	Seng (1986) (as <i>Ct. idellus</i>)	
		<i>Hypophthalmichthys nobilis</i>	Perak Jitra	Fish supplier Fisheries Station	Seng (1986) (as big head carp) Seng (1986) (as big head carp)	
	Leptobarbidae	<i>Leptobarbus hoevenii</i>	Penang	Aquarium shop*	Seng (1986)	
Cichliformes	Cichlidae	<i>Oreochromis</i> sp.	Selangor	Restaurant	Everts and Avenant-Oldewage (2009)	

* The fish examined by Seng (1986) were introduced from Indonesia.

Table 4. Hosts of *Argulus coregoni* reported in Japan. The scientific names of fishes follow Motomura (2023), and the orders and families, to which fishes belong, are based on Froese and Pauly (2023). Fishes are alphabetically arranged in each family, and prefectures are arranged from the northeast to the southwest in the Japanese Archipelago.

Order	Family	Species	Locality		Reference
			Prefecture	Site	
Salmoniformes	Salmonidae	<i>Oncorhynchus masou ishikawai</i>	Gifu	Gero Branch, Gifu Prefectural Research Institute for Fisheries and Aquatic Environments	Hosoe et al. (1975) (as <i>On. rhodurus</i>), Tokuhara et al. (2010, 2019), Tokuhara (2019), Nagasawa et al. (2020a)
				Maze River	Nagasawa et al. (2022b)
				Hida River	Nagasawa et al. (2022b)
				Yoshida River	Nagasawa et al. (2022b)
			Shiga	Lake Biwa basin	Grygier (2004)
				Echi River	Nagasawa and Kawai (2019)
				Kawachidani Stream (Ishida River)	Nagasawa (2009, 2023c)
				Oike River	Nagasawa (2009, 2023c)
				Kanzaki River	Nagasawa (2009, 2023c)
			Nara	Kawarabi River	Tamura and Maruyama (2009), Tamura (2009)
				Wakayama	Takegami (1984) [as <i>Salmo (On.) mas. macrostomus</i>]
			Hyogo	Fisheries Laboratory	Nagasawa and Ohya (1996a) (as <i>On. mas. ishikawai</i>), Kaji et al. (2011) (as <i>On. mas. ishikawai</i>)
				Institute of Hanzaki	Nagasawa et al. (2009)
				Shimane	San-no-tani Stream
				Hiroshima	Nakatsudani River
				Yamaguchi	Usa River
				Negasa River	Nagasawa et al. (2017)
				Shimaji River	Nagasawa et al. (2017)
				Trout farm	Nagasawa et al. (2017)
				Tokushima	Trout farm
					Yuasa (2014), Nagasawa and Yuasa (2020)
<i>Oncorhynchus mas. masou</i>		Akita	Ani River	Nagasawa et al. (2020b)	
			Trout farm	Nagasawa et al. (2020b)	
			Busha Stream	Nagasawa and Sato (2023)	
		Tokyo	Okutama Branch, Tokyo Metropolitan Fisheries Experimental Station	Inoue et al. (1980) (as <i>On. masou</i>), Shimura and Egusa (1980) (as <i>On. masou</i>), Shimura (1981, 1983a, b) (as <i>On. masou</i>), Shimura et al. (1983a, b) (as <i>On. masou</i>), Shimura and Inoue (1984) (as <i>On. masou</i>)	
			Yamanashi	Asakawa River	
			Aichi	Horai Fish Farm	
			Gifu	Itoshiro River	
			Ishikawa	Fisheries Research Center	
			Fukui	Mountain stream	
			Shimane	San-no-tani Stream	
			Kumamoto	Nakabaru River	
				Nagasawa et al. (2019a)	
<i>Oncorhynchus mykiss</i>		Tochigi	Fishing ponds	Nagasawa et al. (2015)	
			Fish farm	Nagasawa et al. (2015)	
		Tokyo	Yoshino Fish Farm, Tokyo Fisheries Research Institute	Hoshina (1950) (as <i>Salmo irideus</i>)	
			Okutama Branch, Tokyo Metropolitan Fisheries Experimental Station	Shimura and Egusa (1980) (as <i>Salm. gairdneri</i>), Shimura (1983a) (as <i>Salm. gairdneri</i>), Shimura et al. (1983b) (as <i>Salm. gairdneri</i>), Shimura and Inoue (1984) (<i>Salm. gairdneri</i>)	
			Nagano	Kizaki Branch, National Fisheries Research Institute	
			Gifu	Gero Branch, Gifu Prefectural Research Institute for Fisheries and Aquatic Environments	
			Aichi	Horai Fish Farm	
			Wakayama	Fish farm	
				Hoshina (1950) (as <i>Salm. irideus</i>)	
<i>Salmo trutta</i>		Tochigi	Lake Chuzenji	Nagasawa (2009)	

Table 4. Continued.

Host			Locality		Reference
Order	Family	Species	Prefecture	Site	
Salmoniformes	Salmonidae	<i>Salvelinus fontinalis</i>	Tochigi	Fish farm	Nagasawa et al. (2015)
			Tokyo	Yoshino Fish Farm, Tokyo Fisheries Research Institute	Hoshina (1950)
				Okutama Branch, Tokyo Metropolitan Fisheries Experimental Station	Inoue et al. (1980), Shimura and Egusa (1980)
			Nagano	Akashina Fisheries Guidance Center	Hoshina (1950)
		<i>Salvelinus leucomaenoides imbricus</i>	Shimane	Takatsu River	Nagasawa and Kawai (2008)
			Nagano	Kesa-zawa Stream	Nagasawa and Kawai (2015)
		<i>Salvelinus l. japonicus</i>	Gifu	Maze River	Nagasawa et al. (2021b, 2022b) (as <i>Salv. leucomaenoides</i>)
				Hida River	Nagasawa et al. (2022b) (as <i>Salv. leucomaenoides</i>)
				Tsukechi River	Nagasawa et al. (2022b) (as <i>Salv. leucomaenoides</i>)
				Itoshiro River	Nagasawa et al. (2022b) (as <i>Salv. leucomaenoides</i>)
				Sho River	Nagasawa et al. (2022b) (as <i>Salv. leucomaenoides</i>)
			Aichi	Gamada River	Nagasawa et al. (2022b) (as <i>Salv. leucomaenoides</i>)
		<i>Salvelinus l. leucomaenoides</i>	Aichi	Horai Fish Farm	Ishii et al. (1978)
			Akita	Ani River	Nagasawa et al. (2020b)
		Hybrid (<i>Salv. l. leucomaenoides</i> × <i>On. mas. masou</i>)	Gifu	Itoshiro River	Nagasawa et al. (2022b) (as <i>Salv. leucomaenoides</i>)
		Unspecified salmonid	Aichi	Horai Fish Farm	Ishii (1979)
Plecoglossidae	<i>Plecoglossus altivelis altivelis</i>	Akita	Ani River		Nagasawa et al. (2019b, 2020b)
			Nukazawa River		Nagasawa and Sato (2023)
			Tochigi	Mumo River	Nagasawa et al. (2015)
				Naka River	Nagasawa et al. (2015)
		Nagano		Akashina Fisheries Guidance Center	Hoshina (1950) (as <i>Pl. altivelis</i>)
			Gifu	Nagara River	Nagasawa et al. (2018b, 2020c), Nagasawa and Morikawa (2019a)
				Maze River	Nagasawa et al. (2018b)
				Shira River	Nagasawa et al. (2018b)
		Aichi		Toyo River	Nagasawa et al. (2018b), Nagasawa and Morikawa (2022a)
			Fukui	Asuwa River	Nagasawa and Morikawa (2022b)
			Shiga	Ado River	Nagasawa et al. (2018b)
			Mie	Miya River	Nagasawa et al. (2018b)
		Kyoto		Oouchiyama River	Nagasawa and Morikawa (2019b) (= Ōuchiyama River), Katahira et al. (2021)
				Hozu River	Yamaguti (1937)*
			Wakayama	Fisheries Laboratory	Nagasawa and Ohya (1996b) (as <i>Pl. altivelis</i>)
			Shimane	Takatsu River	Nagasawa and Morikawa (2019c)
		Kochi		Doi River	Nagasawa and Ikeda (2011)
Cypriniformes	Acheilognathidae	<i>Acheilognathus</i> sp.	Shiga	Otsu	Tokioka (1936) (as <i>Ac. moriokae</i>)
		<i>Tanakia limbata</i>	Okayama	Asahi River	Nagasawa and Taniguchi (2021)
Xenocyprididae		<i>Nipponocypris temminckii</i>	Wakayama	Takase River	This study
Siluriformes	Amblycipitidae	<i>Liobagrus reinii</i>	Fukushima	Aga River	Nagasawa and Ishikawa (2015)
Gobiiformes	Odontobutidae	<i>Odontobutis hikimius</i>	Shimane	Ishitani River	Nagasawa et al. (2014)
Unknown	Unknown	Unknown	Miyagi	Naruse River	Nagasawa et al. (2023c)
			Gifu	Nagara River	Nagasawa (2023d)
			Shiga	Harihata River	Nagasawa (2009, 2023c)
				Ane River	Nagasawa (2009, 2023c)
			Kyoto	Chimidani River	Nagasawa et al. (2013)
			Nara	Higashino River (Kami-kitayama)	Nagasawa and Ohya (1996a: 87, footnote), Nagasawa (2009)

* Yamaguti (1937) described *A. plecoglossi* Yamaguti, 1937, but it has been regarded as a junior synonym of *A. coregoni*.

Takase River), where the following six species of freshwater fishes are also found: ayu, Japanese eel *Anguilla japonica* Temminck and Schlegel, 1846 (Anguilliformes: Anguillidae), and four species of the gobiiform Gobiidae [dusky floating goby *Gymnogobius petschiliensis* (Rendahl, 1924); yoshinobori goby (cross band type) *Rhinogobius nagoyae* Jordan and Seale, 1906; short-spined Japanese trident goby *Tridentigobius brevispinis* Katsuyama, Arai and Nakamura, 1972; and parrot goby *Sicyopterus japonicus* (Tanaka, 1909)] (R. Uchiyama, unpublished data). Of these species, dark chub was predominant and other fishes were in very low abundance, but it is necessary to examine the occurrence of *A. coregoni* on these sympatric fishes for evaluating the importance of dark chub as the host.

As mentioned above, *A. coregoni* has been reported from salmonids and ayu in the upper and middle-lower reaches of rivers, respectively, in the two prefectures, central Japan, and *A. coregoni*-infected salmonids and ayu were collected at elevations of 237–873 m and 65–557 m, respectively, in Gifu Prefecture, and those fishes were also caught at elevations of ca. 380–650 m and 92 m, respectively, in Shiga Prefecture (Nagasawa et al. 2022b; Nagasawa 2023c). In addition, Nagasawa and Kawai (2015) reported that a Japanese char *Salvelinus leucomaenis japonicus* Oshima, 1961 was infected with *A. coregoni* at 1075 m elevation in a mountain stream in Nagano Prefecture, central Japan. In comparison with these elevation data, the specimen of *A. coregoni* reported in this paper was collected at an extremely low-elevation (15 m). Moreover, Nagasawa and Taniguchi (2021) did not record the elevation at which *A. coregoni* parasitized an oily bitterling in the lower reaches of the Asahi River, Okayama Prefecture, but it is here found that these authors also collected the infected fish at 15 m elevation. In central Japan, *A. coregoni* and *A. japonicus* have their own habitat preference dependent on different environmental conditions: *A. coregoni* occurs in the running waters, especially in the colder, well oxygenated mountain streams, while *A. japonicus* inhabits the still or slow-flowing waters (Nagasawa 2023c). The investigated Takase River is a small stream and has very clear running waters and, from these facts, we infer that this river provides *A. coregoni* with a suitable habitat. In other words, we suggest that, in central Japan, *A. coregoni* maintains its population even in extremely low-elevation streams under suitable running-water conditions as well as in high-elevation mountain streams.

Based on literature published between 1936 and 2023, information on the hosts and collection localities of *A. coregoni* in East Asia is tabulated (Tables 1–4). To date, 12 species (in eight families and five orders), nine species (in six families and four orders), and four species (in three families and two orders) of fishes have recorded as hosts of *A. coregoni* from the Russian Far East (Table 1), China (Table 2), and Malaysia (Table 3), respectively. In Japan, this parasite is known to infect 11 species and three subspecies (in six families and four orders) of fishes (Table 4). There is no record of *A. coregoni* from other countries of East Asia. Thus, a total of 31 species and three subspecies of freshwater fishes have so far been reported as hosts of *A. coregoni*

in East Asia, and these fishes belong to 16 families and eight orders. This indicates that *A. coregoni* is not a host-specific parasite. Moreover, it is interesting to note that, excluding four species [common carp *Cyprinus carpio*; grass carp *Ctenopharyngodon idella* (Valenciennes, 1844); Amur catfish *Silurus asotus* Linnaeus, 1758; and yellow catfish *Tachysurus fulvidraco* (Richardson, 1846)], the remaining 27 species and three subspecies of host fishes have been recorded from a single country, which suggests that *A. coregoni* utilizes fishes occurring in individual countries as its hosts. In addition, this parasite is widely distributed in the subarctic (the Russian Far East), temperate (China and Japan), and subtropical (Malaysia) regions, and its habitat is very likely to differ between the three regions, especially the subarctic and subtropical regions. In Japan, *A. coregoni* occurs in well oxygenated, running waters (Nagasawa 2023c) and frequently infects salmoniform fishes (Table 4), and a similar habitat and host utilization has been reported for this species in the temperate and subarctic regions of Europe (Campbell 1971; Mikheev et al. 2015). Contrary to this, in China and Malaysia, for example, grass carp (Xenocyprididae) is one of the known hosts of *A. coregoni* (Tables 2, 3) and this fish inhabits large, slow-flowing or standing water bodies, such as lakes, ponds, pools, and backwaters of large rivers (Froese and Pauly 2023), which implies that *A. coregoni* has adapted to such lentic water conditions and can infect non-salmoniform fishes in these countries. As discussed in the above Remarks, *A. coregoni* from China and Malaysia is morphologically identical to the species from Japan and European countries, but no genetic population study has yet been conducted for *A. coregoni*. It is thus desirable to conduct a molecular analysis of the populations of this species from various locations in East Asia and other distribution areas in order to clarify its genetic diversity.

Acknowledgments

We thank Irene Elgtvedt, Norwegian Zoological Society, Oslo, and Masato Nitta, Nansei Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-Ise, for their assistance with literature. We are also grateful to two anonymous referees for their comments on the manuscript of this paper.

Authors Contributions

Kazuya Nagasawa: Conceptualization; Resources; Formal Analysis; Visualization; Writing – original draft; Writing – review & editing. Ryu Uchiyama: Investigation; Visualization; Writing – review & editing. Ko Tomikawa: Supervision; Writing – review & editing.

Funding

This research has not received any specific grant from any

funding agency, commercial or not-for-profit sector.

Declarations

Competing interests. The authors declare no conflicts of interest.

References

Bandilla, M., Hakalahti-Sirén, T., and Valtonen, E. T. 2008. Patterns of host switching in the fish ectoparasite *Argulus coregoni*. Behavioral Ecology and Sociobiology 62: 975–982. doi:10.1007/s00265-007-0523-y

Benz, G. W. and Otting, R. L. 1996. Morphology of the fish louse (*Argulus*: Branchiura). Drum and Croaker 27: 15–22.

Benz, G. W., Otting, R. L., and Case, A. 1995. Redescription of *Argulus melanostictus* (Branchiura: Argulidae), a parasite of California grunion (*Leuresthes tenuis*: Atherinidae), with notes regarding chemical control of *A. melanostictus* in a captive host population. Journal of Parasitology 81: 754–761. doi:10.2307/3283968

Boxshall, G. A. and Jaume, D. 2009. Exopodites, epipodites and gills in crustaceans. Arthropod Systematics & Phylogeny 67: 229–254. doi:10.3897/asp.67.e31699

Bristow, G. A. 1993. Parasites of Norwegian freshwater salmonids and interactions with farmed salmon—a review. Fisheries Research 17: 219–227. doi:10.1016/0165-7836(93)90021-X

Campbell, A. D. 1971. The occurrence of *Argulus* (Crustacea: Branchiura) in Scotland. Journal of Fish Biology 3: 145–146. doi:10.1111/j.1095-8649.1971.tb03657.x

Chen, C. L. (Ed.) 1973. *An Illustrated Guide to the Fish Diseases and Causative Pathogenic Fauna and Flora in the Hubei Province*. Science Press, Beijing, 271 pp. [In Chinese]

Ding, R. H. 1977. [A preliminary survey on parasitic crustaceans of fishes from Chengdu and neighboring area, Sichuan]. Chinese Journal of Zoology 1977(2): 22–25. [In Chinese]

Dogiel, V. A. and Akhmerov, A. K. 1952. [Parasitic Crustacea of Amur River fishes]. Uchenie zapiski Leningradskogo Ordona Gosudarstvennogo Universiteta, Seria Biologiya, Nauka 28(141): 268–294. [In Russian]

Dolven, S. I. 2020. *Macroparasite Investigations of European Perch (Perca fluviatilis) and European Whitefish (Coregonus lavaretus) in Lake Norsjø, South-Eastern Norway*. Master thesis, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Kongsberg, 75 pp.

Ermolenko, A. V. 1992. *Parazity Ryb Presnovodnykh Vodoyemov Kontinental'noy Chasti Basseyna Yaponskogo Morya [Parasites of Fishes in Freshwater Bodies of the Continental Part of the Japan Sea Basin]*. Akademiya Nauk SSSR, Far Eastern Branch, Institute of Biology and Soil Science, Vladivostok, 238 pp. [In Russian]

Ermolenko, A. V. 2004a. Parasite fauna from loaches (Cobitidae) of water basins in the Primorsk Territory. Parazitologiya 38: 53–67. [In Russian with English abstract]

Ermolenko, A. V. 2004b. Parasite fauna of the Amur sleeper, *Percottus glehni* (Eleotridae), in Primorye, Parazitologiya 38: 251–256. [In Russian with English abstract]

Ermolenko, A. V. and Kazachenko, V. N. 1989. Parasitic crustaceans of fishes from the continental waters in the Japan Sea basin. Pp. 55–58. In: Lebedev, B. I. (Ed.) *Parasites of Animals and Plants*. Akademiya Nauk SSSR, Far Eastern Branch, Institute of Biology and Soil Science, Vladivostok. [In Russian with English abstract]

Everts, L. and Avenant-Oldewage, A. 2009. First record of *Argulus coregoni*: a fish ectoparasitic crustacean from Malaysia and additional notes on the morphology. Malaysian Applied Biology 38(2): 61–71.

Froese, R. and Pauly, D. (Eds) 2023. FishBase, version (10/2023). Available at <https://www.fishbase.org> (5 January 2024).

Fryer, G. 1982. *The Parasitic Copepoda and Branchiura of British Freshwater Fishes. A Handbook and Key. Scientific Publication 46*. Freshwater Biological Association, Ambleside, 87 pp.

Goda, Y., Akatsuka, T., and Nagasawa, K. 2017. *Argulus japonicus* (Branchiura: Argulidae) collected with a plankton net in Lake Biwa, central Japan. Cancer 26: 17–19. [In Japanese] doi:10.18988/cancer.26.0_17

Grygier, M. J. 2004. [Clarifying the parasitofauna of Lake Biwa]. Pp. 273–284, 341–342. In: Nagasawa, K. (Ed.) *Aquaparasitology in the Field in Japan*. Tokai University Press, Hadano. [In Japanese]

Gurney, R. 1948. The British species of fish-louse of the genus *Argulus*. Proceedings of the Zoological Society of London 118: 553–558. doi:10.1111/j.1096-3642.1948.tb00394.x

Gusev, A. V. 1987. Phylum Arthropoda. Pp. 378–524. In: Bauer, O. N. (Ed.) *Key to Parasites of Freshwater Fishes of the U.S.S.R., Volume 3*. Nauka, Leningrad. [In Russian]

Hakalahti-Sirén, T., Mikheev, V. N., and Valtonen, E. T. 2008. Control of freshwater fish louse *Argulus coregoni*: a step towards an integrated management strategy. Diseases of Aquatic Organisms 82: 67–77. doi:10.3354/dao01971

Hirayama, T. and Nakagoshi, N. 2003. The freshwater fish fauna of the rivers flowing into the Seto Inland Sea in Hiroshima Prefecture. Japanese Journal of Ichthyology 50: 1–13. [In Japanese with English abstract] doi:10.1136/jji.1950.50.1

Hoshina, T. 1950. Über eine *Argulus*-Art im Salmonidenteiche. Bulletin of the Japanese Society of Scientific Fisheries 16: 239–243. doi:10.2331/suisan.16.239

Hosoe, S., Morikawa, S., and Mikami, T. 1975. On the toxicity, absorption and residuality of trichlorfon given orally to rainbow trout, and effects on the extermination of fish lice. Report of Gifu Prefectural Fisheries Experimental Station 21: 125–129. [In Japanese]

Hosoya, K. 2015. River dark chub *Candidia temminckii* (Temminck and Schlegel, 1846). Pp. 92–93. In: Hosoya, K. (Ed.) *Freshwater Fishes of Japan*. Yama-kei Publishers, Tokyo. [In Japanese]

Humes, A. G. and Gooding, R. U. 1964. A method for studying the external anatomy of copepods. Crustaceana 6: 238–240. doi:10.1163/156854064X00650

Inoue, K., Shimura, S., Saito, M., and Nishimura, K. 1980. The use of trichlorfon in the control of *Argulus coregoni*. Fish Pathology 15: 37–42. [In Japanese with English abstract] doi:10.3147/jfsp.15.37

Ishii, Y. 1979. [Control of *Argulus coregoni*]. Annual Report of the Aichi Prefectural Fisheries Experimental Station for the Fiscal Year 1978: 170–172. [In Japanese]

Ishii, Y., Koyama, S., and Imaizumi, K. 1978. [Control of *Argulus coregoni*]. Annual Report of the Aichi Prefectural Fisheries Experimental Station for the Fiscal Year 1977: 152–154. [In Japanese]

Ishizaki, D., Kikko, T., Fujioka, Y., Mizuno, T., Nagata, T., Yodo, T., and Okubo, T. 2016. The importance of habitat continuity between Lake Biwa and inlet rivers with respect to fish fauna, Japan. Japanese Journal of Ichthyology 63: 89–106. [In Japanese with English abstract] doi:10.1136/jji.63.89

Kaji, T., Møller, O. S., and Tsukagoshi, A. 2011. A bridge between original and novel states: ontogeny and function of “suction discs” in the Branchiura (Crustacea). Evolution & Development 13: 119–126. doi:10.1111/j.1525-142X.2011.00462.x

Katahira, H., Yamamoto, A., Masubuchi, T., Isshiki, T., Watanabe, N., and Kanaiwa, M. 2021. A report on potential effects of an ectoparasite *Argulus coregoni* (Crustacea: Branchiura) on ayu under rearing condition. Aquaculture 543: 736980. doi:10.1016/j.

aquaculture.2021.736980

Kato, F. 1964. [Two species of parasites from yamame]. *Collecting and Breeding* 26: 180. [In Japanese]

Khan, S., Ali, W., Javid, M., Ullah, I., Hussain, G., Shahnaz, Z., Ullah, I., and Ullah, I. 2017. Prevalence of *Argulus* in common carp (*Cyprinus carpio*) from D.I. Khan (Khyber Pakhtunkhwa) Pakistan. *Journal of Entomology and Zoology Studies* 5: 203–205.

Khwaja, N. and Tripathi, A. 2022. A scanning electron microscopic study of *Argulus coregoni* Thorell, 1866 (Crustacea: Branchiura) parasitizing *Carassius auratus* (Linnaeus, 1758) from India. *Annals of Parasitology* 68: 861–867.

Kimura, S. 1970. Notes on the reproduction of water lice (*Argulus japonicus* Thiele). *Bulletin of Freshwater Fisheries Research Laboratory* 20: 109–126. [In Japanese with English abstract]

Kuang, P. and Qian, J. 1991. *Economic Fauna of China. Parasitic Crustacea of Freshwater Fishes*. Science Press, Beijing, iv+199 pp. [In Chinese]

Markevich, A. P. 1937. *Copepoda Parasitica der Binnengewässer der USSR*. Akademiya Nauk Ukrainskoi SSR, Institute of Zoology and Biology, Kiev, 222 pp., pls 1–27. [In Russian with German summary]

Martin, F. M. 1932. On the morphology and classification of *Argulus* (Crustacea). *Proceedings of the Zoological Society of London* 103: 771–806. doi:10.1111/j.1096-3642.1932.tb01097.x

Matsumiya, Y., Watanabe, K., Iguchi, K., Iwata, H., Yamamoto, G., and Nishida, M. 2001. Freshwater fishes of the Minami River system in Reinan Region, Fukui Prefecture. *Japanese Journal of Ichthyology* 48: 93–107. [In Japanese with English abstract] doi:10.11369/jji1950.48.93

Mikheev, V. N., Pasternak, A. F., and Valtonen, E. T. 2007. Host specificity of *Argulus coregoni* (Crustacea: Branchiura) increases at maturation. *Parasitology* 134: 1767–1774. doi:10.1017/S0031182007003125

Mikheev, V. N., Pasternak, A. F., and Valtonen, E. T. 2015. Behavioural adaptations of argulid parasites (Crustacea: Branchiura) to major challenges in their life cycle. *Parasites & Vectors* 8: 394. doi:10.1186/s13071-015-1005-0

Moravec, F. 2001. *Checklist of the Metazoan Parasites of Fishes of the Czech Republic and the Slovak Republic (1873–2000)*. Academia, Prague, 168 pp.

Motomura, H. 2023. List of Japan's All Fish Species. Current Standard Japanese and Scientific Names of All Fish Species Recorded from Japanese Waters. The Kagoshima University Museum, Kagoshima. Online ver. 23. Available at: <https://www.museum.kagoshima-u.ac.jp/staff/motomura/jaf.html> (5 January 2024). [In Japanese]

Mousavi, H. E., Behtash, F., Rostami-Bashman, M., Mirzargar, S. S., Shayan, P., and Rahmati-holasoo, H. 2011. Study of *Argulus* spp. infestation rate in goldfish, *Carassius auratus* (Linnaeus, 1758) in Iran. *Human & Veterinary Medicine-International Journal of the Bioflux Society* 3: 198–204.

Nagasawa, K. 2009. Synopsis of branchiurans of the genus *Argulus* (Crustacea, Argulidae), ectoparasites of freshwater and marine fishes, in Japan (1900–2009). *Bulletin of the Biogeographical Society of Japan* 64: 135–148. [In Japanese with English abstract]

Nagasawa, K. 2011. The biology of *Argulus* spp. (Branchiura, Argulidae) in Japan: a review. Pp. 15–21. In: Asakura, A., Bauer, R. T., Hines, A. H., Thiel, M., Held, C., Schubart, C., Furse, J. M., Coughran, J., Baeza, A., Wada, K., Yamaguchi, T., Kawai, T., Ohtsuka, S., Archdale, M. V., and Moriyasu, M. (Eds) *Crustaceana Monographs 15. New Frontiers in Crustacean Biology*. Brill, Leiden. doi:10.1163/ej.9789004174252.i-354.13

Nagasawa, K. 2017a. *Argulus japonicus* (Branchiura: Argulidae) parasitic on a freshwater minnow, *Opsariichthys platypus* (Cyprinidae): the second record from Shikoku, western Japan. *Biogeography* 19: 150–152. doi:10.11358/biogeo.19.150

Nagasawa, K. 2017b. A checklist of the parasites of freshwater fishes of Yamanashi Prefecture, Japan (1914–2016), with a new prefectural record for *Argulus coregoni* (Branchiura: Argulidae). *Bulletin of the Biogeographical Society of Japan* 71: 157–165. [In Japanese with English abstract]

Nagasawa, K. 2021. *Argulus japonicus* (Branchiura: Argulidae) parasitic on largemouth bass *Micropterus salmoides* in Japan, with the morphology of the adult female of the argulid. *Crustacean Research* 50: 119–129. doi:10.18353/crustacea.50.0_119

Nagasawa, K. 2023a. Records of *Argulus japonicus* (Branchiura: Argulidae) parasitic on freshwater fishes reared in Shiga Prefecture, central Japan. *Nature of Kagoshima* 50: 89–93. [In Japanese with English abstract]

Nagasawa, K. 2023b. First Japanese record of *Argulus nobilis* (Crustacea: Branchiura: Argulidae), an ectoparasite of gars of North American origin. *Species Diversity* 28: 205–215. doi:10.12782/specdiv.28.205

Nagasawa, K. 2023c. Distribution of fish parasites *Argulus japonicus* and *Argulus coregoni* (Crustacea: Branchiura: Argulidae) in the Lake Biwa Basin, central Japan. *Species Diversity* 28: 217–223. doi:10.12782/specdiv.28.217

Nagasawa, K. 2023d. Specimen of *Argulus coregoni* (Branchiura: Argulidae) collected in the middle-reaches of the Nagara River, Gifu Prefecture, central Japan, in 1986. *Nature of Kagoshima* 50: 17–20. [In Japanese with English abstract]

Nagasawa, K. and Ikeda, Y. 2011. First record of the fish ectoparasite *Argulus coregoni* Thorell (Crustacea: Branchiura) from Shikoku, Japan. *Biosphere Science* 50: 55–58. [In Japanese with English abstract] doi:10.15027/39894

Nagasawa, K. and Ishikawa, T. 2015. *Argulus coregoni* (Branchiura: Argulidae) parasitic on the torrent catfish *Liobagrus reinii* in Japan. *Biogeography* 17: 99–102. doi:10.11358/biogeo.17.99

Nagasawa, K. and Ishiyama, N. 2019. *Argulus coregoni* (Branchiura: Argulidae) parasitic on masu salmon, *Oncorhynchus masou masou* (Salmonidae), reared in Ishikawa Prefecture, central Japan. *Nature of Kagoshima* 46: 73–76. [In Japanese with English abstract]

Nagasawa, K. and Kawai, K. 2008. New host record for *Argulus coregoni* (Crustacea: Branchiura: Argulidae), with discussion on its natural distribution in Japan. *Journal of the Graduate School of Biosphere Science, Hiroshima University* 47: 23–28. doi:10.15027/39864

Nagasawa, K. and Kawai, K. 2015. *Argulus coregoni* (Crustacea: Branchiura: Argulidae) from a yamato charr, *Salvelinus leucomae-nis japonicus*, in a Japanese stream at high altitude. *Bulletin of the Japanese Society of Biogeography* 70: 261–265. [In Japanese with English abstract]

Nagasawa, K. and Kawai, K. 2016. *Argulus coregoni* (Branchiura: Argulidae) parasitic on salmonids in Shimane Prefecture, Japan. *Bulletin of the Hoshizaki Green Foundation* 19: 4. [In Japanese with English abstract]

Nagasawa, K. and Kawai, K. 2019. Further record of a fish parasite *Argulus coregoni* (Crustacea: Branchiura: Argulidae) in tributaries to Lake Biwa, central Japan. *Nature of Kagoshima* 46: 95–98. [In Japanese with English abstract]

Nagasawa, K. and Miyajima, N. 2018. *Argulus japonicus* (Branchiura: Argulidae), a freshwater fish ectoparasite, from Oita Prefecture, Kyushu, Japan. *Nature of Kagoshima* 45: 59–62. [In Japanese with English abstract]

Nagasawa, K. and Morikawa, M. 2019a. Infection of *Argulus coregoni* (Branchiura: Argulidae) on ayu, *Plecoglossus altivelis altivelis* (Plecoglossidae), in the Nagara River, Gifu Prefecture, central Japan. *Nature of Kagoshima* 46: 45–47. [In Japanese with English abstract]

Nagasawa, K. and Morikawa, M. 2019b. *Argulus coregoni* (Branchiura: Argulidae) parasitic on ayu, *Plecoglossus altivelis altivelis* (Plecoglossidae), in the Ōuchiyama River, central Japan, with a discuss-

sion on the importance of ayu as a riverine host of *A. coregoni*. *Nature of Kagoshima* 46: 21–26. [In Japanese with English abstract]

Nagasawa, K. and Morikawa, M. 2019c. *Argulus coregoni* (Branchiura: Argulidae) parasitic on ayu, *Plecoglossus altivelis altivelis*, in the Takatsu River, Shimane Prefecture, Japan. *Bulletin of the Hoshizaki Green Foundation* 22: 214. [In Japanese with English abstract]

Nagasawa, K. and Morikawa, M. 2022a. The argulid branchiuran *Argulus coregoni* parasitic on ayu, *Plecoglossus altivelis altivelis* (Plecoglossidae), in the Toyo River, Aichi Prefecture, central Japan. *Nature of Kagoshima* 49: 101–104. [In Japanese with English abstract]

Nagasawa, K. and Morikawa, M. 2022b. Note on a fish parasite *Argulus coregoni* (Branchiura: Argulidae) from Fukui Prefecture, central Japan. *Nature of Kagoshima* 49: 61–63. [In Japanese with English abstract]

Nagasawa, K. and Nagai, T. 2023. *Argulus japonicus* (Branchiura: Argulidae) from a koi carp *Cyprinus carpio* reared in Hiroshima Prefecture, western Japan, with a review of the biology of *A. japonicus* parasitic on common carp and koi carp in Japan. *Nature of Kagoshima* 50: 109–114. [In Japanese with English abstract]

Nagasawa, K. and Ohya, S. 1996a. *Argulus coregoni* (Crustacea: Branchiura) from amago salmon *Oncorhynchus masou ishikawai* reared in central Honshu, Japan. *Bulletin of the Fisheries Laboratory, Kinki University* 5: 83–88. [In Japanese with English abstract]

Nagasawa, K. and Ohya, S. 1996b. Infection of *Argulus coregoni* (Crustacea: Branchiura) on *Plecoglossus altivelis* reared in central Honshu, Japan. *Bulletin of the Fisheries Laboratory, Kinki University* 5: 89–92.

Nagasawa, K. and Sato, H. 2014. Two crustacean parasites, *Argulus japonicus* (Branchiura) and *Lernaea cyprinacea* (Copepoda), from freshwater fishes in Gunma Prefecture, Japan, with a new host record for *A. japonicus*. *Bulletin of Gunma Museum of Natural History* 18: 65–68.

Nagasawa, K. and Sato, M. 2023. Note on *Argulus coregoni* (Branchiura: Argulidae) parasitic on ayu *Plecoglossus altivelis altivelis* and stream-resident masu salmon *Oncorhynchus masou masou* in Akita Prefecture, northern Honshu, Japan. *Nature of Kagoshima* 50: 115–121. [In Japanese with English abstract]

Nagasawa, K. and Taniguchi, R. 2021. Second record of *Argulus coregoni* (Branchiura: Argulidae) from acheilognathine fish (Cyprinidae): its infection of an oily bitterling *Tanakia limbata* in central Japan. *Taxa, Proceedings of the Japanese Society of Systematic Zoology* 51: 29–37. [In Japanese with English abstract] doi:10.19004/taxa.51.0_29

Nagasawa, K. and Yuasa, A. 2020. The fish louse *Argulus coregoni* from *Oncorhynchus masou ishikawai* (Salmonidae) cultured in Shikoku, western Japan, with a list of occurrence records of *A. coregoni* from fishes reared in Japan. *Crustacean Research* 49: 1–8. doi:10.18353/crustacea.49.0_1

Nagasawa, K., Uyeno, D., and Tochimoto, T. 2009. *Argulus japonicus* Thiele and *A. coregoni* Thorell (Crustacea: Branchiura) from western Honshu, Japan. *Journal of the Graduate School of Biosphere Science, Hiroshima University* 48: 43–47. [In Japanese with English abstract] doi:10.15027/39874

Nagasawa, K., Murase, T., Yanagi, S., and Maeno, K. 2012. *Argulus japonicus* Thiele (Crustacea: Branchiura) from Kyushu, western Japan, with a note on its heavy infection of koi carp (*Cyprinus carpio*) and Japanese crucian carp (*Carassius cuvieri*). *Biosphere Science* 51: 15–20. [In Japanese with English abstract] doi:10.15027/34525

Nagasawa, K., Hanazaki, K., and Morimoto, S. 2013. Two branchiuran crustaceans (*Argulus coregoni* Thorell and *A. japonicus* Thiele) from Kyoto and Osaka prefectures, central Japan. *Biosphere Science* 52: 59–64. [In Japanese with English abstract] doi:10.15027/39923

Nagasawa, K., Kuwabara, T., and Nakano, H. 2014. *Odontobutis hikimius* (Perciformes: Odontobutidae), a new host for *Argulus coregoni* (Crustacea: Branchiura: Argulidae). *Biosphere Science* 53: 33–36. doi:10.15027/39930

Nagasawa, K., Ishikawa, T., and Oda, N. 2015. A note on the parasite fauna of freshwater fishes in Tochigi Prefecture, Japan, with the second prefectural records for *Argulus coregoni* (Branchiura: Argulidae). *Bulletin of Tochigi Prefectural Museum* 32: 29–33.

Nagasawa, K., Hatama, T., and Nitta, M. 2017. *Argulus coregoni* (Branchiura: Argulidae) parasitic on wild and cultured *Oncorhynchus masou ishikawai* (Salmonidae) in Yamaguchi Prefecture, western Honshu, Japan. *Biogeography* 19: 160–163. doi:10.11358/biogeo.19.160

Nagasawa, K., Nitta, M., and Kawai, K. 2018a. *Argulus japonicus* (Branchiura: Argulidae) parasitic on a lakeweed chub, *Ischikauia steenackeri* (Cyprinidae), in northern Kyushu, Japan. *Biogeography* 20: 122–124. doi:10.11358/biogeo.20.122

Nagasawa, K., Morikawa, M., and Yoshioka, T. 2018b. *Argulus coregoni* (Branchiura: Argulidae) parasitic on ayu, *Plecoglossus altivelis altivelis* (Plecoglossidae), in central Honshu, Japan. *Biogeography* 20: 125–127. doi:10.11358/biogeo.20.125

Nagasawa, K., Yoshino, T.-a., and Iwatsuki, Y. 2019a. First record of *Argulus coregoni* (Branchiura: Argulidae), a skin parasite of freshwater fishes, from Kyushu, Japan. *Nature of Kagoshima* 45: 233–235.

Nagasawa, K., Ishikawa, T., and Gōma, Y. 2019b. New record of a freshwater fish parasite *Argulus coregoni* (Branchiura: Argulidae) from Akita Prefecture, northern Honshu, Japan. *Biogeography* 21: 51–53. doi:10.11358/biogeo.21.51

Nagasawa, K., Hara, T., Tokuhara, T., and Kishi, D. 2020a. The argulid branchiuran *Argulus coregoni* parasitic on *Oncorhynchus masou ishikawai* (Salmonidae) reared in Gifu Prefecture, central Japan, with a note on dark irregular stripes on the body surface of parasitized fish. *Cancer* 29: e125–e129. [In Japanese] doi:10.18988/cancer.29.0_e125

Nagasawa, K., Sato, M., and Yagisawa, M. 2020b. Record of a skin parasite *Argulus coregoni* from wild and farmed salmonids in Akita Prefecture, northern Honshu, Japan. *Nature of Kagoshima* 47: 91–95. [In Japanese with English abstract]

Nagasawa, K., Morikawa, M., Shimomura, Y., and Kishi, D. 2020c. Further note on *Argulus coregoni* parasitic on ayu, *Plecoglossus altivelis altivelis* (Plecoglossidae), in the Nagara River, Gifu Prefecture, central Japan. *Nature of Kagoshima* 46: 563–566. [In Japanese with English abstract]

Nagasawa, K., Fujino, Y., and Nakano, H. 2021a. The three-lips, *Opsariichthys uncirostris uncirostris* (Cyprinidae), a new host of *Argulus japonicus* (Branchiura: Argulidae), with its first host record from Lake Biwa, Japan. *Nature of Kagoshima* 48: 37–39.

Nagasawa, K., Nagahama, A., and Kawakubo, N. 2021b. *Argulus coregoni* (Branchiura: Argulidae) from a white-spotted char, *Salvelinus leucomaenoides* (Salmonidae), in the Maze River, Gifu Prefecture, central Japan. *Nature of Kagoshima* 48: 113–117. [In Japanese with English abstract]

Nagasawa, K., Asayama, T., and Fujimoto, Y. 2022a. Redescription of *Argulus mongolianus* (Crustacea: Branchiura: Argulidae), an ectoparasite of freshwater fishes in East Asia, with its first record from Japan. *Species Diversity* 27: 167–179. doi:10.12782/specdiv.27.167

Nagasawa, K., Kishi, D., and Tokuhara, T. 2022b. Occurrence of a skin parasite *Argulus coregoni* (Branchiura: Argulidae) on salmonids in mountain streams, central Japan, with discussion on its longitudinal distribution and host utilization in rivers. *Species Diversity* 27: 159–166. doi:10.12782/specdiv.27.159

Nagasawa, K., Nitta, M., and Kawai, K. 2023a. First specimen-based

record of *Argulus japonicus*, an ectoparasite of freshwater fishes, from Okayama Prefecture, western Japan. *Biogeography* 25: 19–21. doi:10.11358/biogeo.25.19

Nagasawa, K., Asayama, T., Fujimoto, Y., and Nitta, M. 2023b. The fish louse *Argulus japonicus* (Branchiura: Argulidae) parasitic on common carp *Cyprinus carpio* in Lake Izunuma, Miyagi Prefecture, Japan, and records of argulid branchiurans in northern Honshu. *Nature of Kagoshima* 50: 55–60. [In Japanese with English abstract]

Nagasawa, K., Iwashita, M., Kimijima, Y., Kitamura, S., and Itagaki, N. 2023c. New record of *Argulus coregoni* (Branchiura: Argulidae) from Miyagi Prefecture, northern Honshu, Japan. *Nature of Kagoshima* 49: 153–157. [In Japanese with English abstract]

Nagasawa, K., Yamauchi, T. and Shimizu, M. 2024a. Note on *Argulus japonicus* (Branchiura: Argulidae) parasitic on rosy bitterling *Rhodeus ocellatus* in Kumamoto City, Kyushu, western Japan. *Nature of Kagoshima* 50: 201–204. [In Japanese with English abstract]

Nagasawa, K., Nitta, M., and Azuma, N. 2024b. New records of a freshwater fish parasite *Argulus japonicus* (Branchiura: Argulidae) from northern Honshu, Japan, with a note on its occurrence in a brackish water lake. *Crustacean Research* 53: 1–15. doi:10.18353/crustacea.53.0_1

Nakazawa, K. 1914. [A study on *Argulus japonicus*, a louse of goldfish]. *Journal of the Imperial Fisheries Institute* 9: 306–316. [In Japanese]

Neethling, L. A. M. and Aenant-Oldewage, A. 2016. Branchiura—a compendium of the geographical distribution and a summary of their biology. *Crustaceana* 89: 1243–1446. doi:10.1163/15685403-00003597

Nitta, Y., Mukai, T., Yodo, T., and Yoshioka, M. 2014. Fish fauna of the Ano River, Mie Prefecture. *Bulletin of the Graduate School of Bio-resources, Mie University* 40: 45–64. [In Japanese with English abstract]

Økland, K. A. 1985. Fish lice *Argulus*—morphology, biology and records from Norway. *Fauna* 38: 53–59. [In Norwegian with English abstract]

Pasternak, A., Mikheev, V., and Valtonen, E. T. 2004. Growth and development of *Argulus coregoni* (Crustacea: Branchiura) on salmonid and cyprinid hosts. *Diseases of Aquatic Organisms* 58: 203–207. doi:10.3354/dao058203

Penczak, T. 1972. *Argulus coregoni* Thorell, 1864 (Crustacea, Branchiura) in Poland. *Fragmenta Faunistica* 18: 275–282. [In Polish with English abstract] doi:10.3161/00159301ff1972.18.15.275

Rizvi, S. S. H. 1969. Studies on the structure of the sucker and seasonal incidence of *Argulus foliaceus* (L., 1758) on some freshwater fishes (Branchiura, Argulidae). *Crustaceana* 17: 200–206. doi:10.1163/156854068X00089

Roland, C. 1963. Etudes sur les crustacés branchiourés d'Europe III. Redescription d'*Argulus coregoni* Thorell. *Bulletin du Muséum National d'Histoire Naturelle*, 2e Série 35: 496–506.

Romanovský, A. 1955. The Czechoslovak species of the genus *Argulus* and their distribution. *Věstník Československé společnosti zoologické* 19: 27–43. [In Czech with English abstract]

Saha, M. and Bandyopadhyay, P. K. 2015. First report of three species of *Argulus* (Crustacea: Branchiura) infesting on red-can Oranda gold fish (*Carassius auratus auratus*) in India. *Biolife* 3: 813–819. doi:10.5281/zenodo.7306506

Seng, L. T. 1986. Two ectoparasitic crustaceans belonging to the family Argulidae (Crustacea: Branchiura) in Malaysian freshwater fishes. *Malayan Nature Journal* 39: 157–164.

Shimura, S. 1981. The larval development of *Argulus coregoni* Thorell (Crustacea: Branchiura). *Journal of Natural History* 15: 331–348. doi:10.1080/00222938100770251

Shimura, S. 1983a. Seasonal occurrence, sex ratio and site preference of *Argulus coregoni* Thorell (Crustacea: Branchiura) parasitic on cultured freshwater salmonids in Japan. *Parasitology* 86: 537–552. doi:10.1017/S0031182000050721

Shimura, S. 1983b. SEM observation on the mouth tube and preoral sting of *Argulus coregoni* Thorell and *Argulus japonicus* Thiele (Crustacea: Branchiura). *Fish Pathology* 18: 151–156. doi:10.3147/jsfp.18.151

Shimura, S. and Egusa, S. 1980. Some ecological note on the egg deposition of *Argulus coregoni* Thorell (Crustacea, Branchiura). *Fish Pathology* 15: 43–47. [In Japanese with English abstract] doi:10.3147/jsfp.15.43

Shimura, S. and Inoue, K. 1984. Toxic effects of extract from the mouth-parts of *Argulus coregoni* Thorell (Crustacea: Branchiura). *Bulletin of the Japanese Society of Scientific Fisheries* 50: 729. doi:10.2331/suisan.50.729

Shimura, S., Inoue, K., Kudo, M., and Egusa, S. 1983a. Studies on effects of parasitism of *Argulus coregoni* Thorell (Crustacea: Branchiura) on furunculosis of *Oncorhynchus masou* (Salmonidae). *Fish Pathology* 18: 37–40. [In Japanese with English abstract] doi:10.3147/jsfp.18.37

Shimura, S., Inoue, K., Kasai, K., and Saito, M. 1983b. Hematological changes of *Oncorhynchus masou* (Salmonidae) by the infection of *Argulus coregoni* Thorell (Crustacea: Branchiura). *Fish Pathology* 18: 157–162. [In Japanese with English abstract] doi:10.3147/jsfp.18.157

Smirnova, T. S. 1971. Parasitic Crustacea from the fishes of the river Amur's basin. *Akademija Nauk SSSR, Zoological Institute, Parasitological Papers* 25: 177–195. [In Russian]

Sokolov, S. G., Shedko, M. B., Protasov, E. N., and Frolov, E. V. 2012. Parasites of the inland water fishes of Sakhalin Island. Pp. 179–216. In: Bogatov, V. V., Barkalov, V. Y., Leleff, A. S., Makarchenko, E. A., and Storozhenko, S. Y. (Eds) *Flora and Fauna of North-West Pacific Islands (Materials of International Kuril Island and International Sakhalin Island Projects)*. Dalnauka, Vladivostok. [In Russian with English abstract]

Song, D. S. and Kuang, P. R. 1980. *Illustrations of Chinese Animals—Crustacea, Volume 4*. Science Press, Beijing, 90 pp. [In Chinese]

Stammer, J. 1959. Beiträge zur Morphologie, Biologie und Bekämpfung der Karpfenläuse. *Zeitschrift für Parasitenkunde* 19: 135–208. doi:10.1007/BF00260214

Takeda, M., Shimazu, T., Urawa, S., Araki, J., Kuramochi, T., and Machida, M. 2000. Ectoparasitic crustaceans of shrimps and fishes from the inside moats of the Imperial Palace, Tokyo. *Memoirs of the National Science Museum* 35: 75–78. [In Japanese with English abstract]

Takegami, T. 1984. On *Argulus coregoni* parasitic on *Salmo (Oncorhynchus) masou macrostomus* in Hiki River. *Nanki Seibusu* 26: 45–50. [In Japanese]

Tamura, F. 2009. [What is *Argulus coregoni*?]. *Shizen to Kyoiku* 19: 10–12. [In Japanese]

Tamura, F. and Maruyama, K.-i. 2009. Fish louse at the Kawarabi river in the Oku-Yoshino Forest for Practical Exercises, Center for Natural Environment Education, Nara University of Education. *Bulletin of Center for Natural Environment Education, Nara University of Education* 9: 33–36. [In Japanese]

Taylor, N. G. H., Sommerville, C., and Wootten, R. 2006. The epidemiology of *Argulus* spp. (Crustacea: Branchiura) infections in stillwater trout fisheries. *Journal of Fish Diseases* 29: 193–200. doi:10.1111/j.1365-2761.2006.00704.x

Thiele, J. 1904. Beiträge zur Morphologie der Arguliden. *Mitteilungen aus dem Zoologischen Museum zu Berlin* 2(4): 1–51, pls 6–9.

Thorell, T. 1864. Om tvenne europeiska Argulider; jemte anmärkningar om Argulidernas morfologi och systematiska ställning, samt en öfversigt af de för närvarande kända arterna af denna familj. Of-

versigt af Kongliga Vetenskaps-Academiens Forhandlingar 1864: 7–72, pls 2–4.

Thorell, T. 1866. On two European Argulidae, with remarks on the morphology of the Argulidae and their systematic position, together with a review of the species of the family at present known. Annals and Magazine of Natural History, 3rd Series 18: 149–169. doi:10.1080/00222936608679625

Tokioka, T. 1936. Preliminary report on Argulidae in Japan. Annotations Zoologicae Japonenses 15: 334–343. doi:10.34434/za000391

Tokioka, T. 1965. *Argulus coregoni* Thorell. P. 504. In: Okada, Y., Uchida, S., and Uchida, T. (Eds) *New Illustrated Encyclopedia of the Fauna of Japan, II*. Hokuryu-kan, Tokyo. [In Japanese]

Tokuhara, T. 2019. Stocking mature effects as the means to propagation of resident Salmonidae. Aquabiology 41: 475–480. [In Japanese with English abstract]

Tokuhara, T., Kishi, D., Hara, T., and Kumazaki, H. 2010. Egg eyeing rates and physical characteristics of spawning redds of stocked amago salmon *Oncorhynchus masou ishikawai* in a stream. Nippon Suisan Gakkaishi 76: 370–374. [In Japanese with English abstract] doi:10.2331/suisan.76.370

Tokuhara, T., Sato, M., Ohara, K., Tsuji, H., and Kishi, D. 2019. Egg number and eyed egg rate in artificial spawning sites for masu salmon *Oncorhynchus masou masou* and *O. m. ishikawai* in streams. Journal of Fisheries Technology 11: 91–96. [In Japanese with English abstract]

Uno, M., Tawara, S., Tsuchiya, H., and Koyama, S. 1975. [On *Argulus coregoni* parasitic on adult rainbow trout and amago salmon]. Annual Report of the Aichi Prefectural Fisheries Experimental Station for Fiscal 1973 and 1974: 207–208. [In Japanese]

Wadeh, H., Yang, J. W., and Li, G. Q. 2008. Ultrastructure of *Argulus japonicus* Thiele, 1900 (Crustacea: Branchiura) collected from Guangdong, China. Parasitology Research 102: 765–770. doi:10.1007/s00436-007-0837-8

Wagler, E. 1935. Die deutschen Karffenläuse. Zoologischer Anzeiger 110: 1–10.

Wang, K.-N. 1958. Preliminary studies on four species of *Argulus* parasitic on fresh-water fishes taken from the area between Nanking and Shanghai, with notes on the early larval development of *Argulus chinensis*. Acta Zoologica Sinica 10: 322–336, pls 1–4. [In Chinese with English abstract]

Wang, K.-N. 1964. Parasitic crustaceans of fresh-water fishes from Kiangsu and Shanghai. Acta Zoologica Sinica 16: 465–473. [In Chinese with English abstract]

Yamaguti, S. 1937. On two species of *Argulus* from Japan. Pp. 781–784. In: Schulz, R.-E. S. and Gnyedina, M. P. (Eds) *Papers on Helminthology Published in Commemoration of the 30 Year Jubilee of the Scientific, Educational and Social Activities of the Honoured Worker of Science K. J. Skrjabin, M. Ac. Sci. and of 15th Anniversary of All-Union Institute of Helminthology*. Lenin All-Union Academy of Agricultural Science, Moscow.

Yamauchi, T. and Shimizu, M. 2013. New host and distribution records for the freshwater fish ectoparasite *Argulus japonicus* (Crustacea: Branchiura: Argulidae). Comparative Parasitology 80: 136–137. doi:10.1654/4554.1

Yin, W.-y. 1962. Parasitic copepods and Branchiura of fresh-water fishes from North-east China and Inner Mongolia. Acta Hydrobiologica Sinica 1962(1): 31–46, pl. 1. [In Chinese with English abstract]

Yuasa, A. 2014. [Amago salmon culture and infection control measures]. Tokushima Suiken Dayori 88: 1–5. [In Japanese]

Yue, C., Wang, L., Su, L., Duan, X., and Ma, X. 1997. [Studies on parasitic crustaceans of freshwater fishes in Xinjiang and their distributional features]. Chinese Journal of Veterinary Parasitology 5: 28–29, 53. [In Chinese]

Zhang, Q. and Ma, C. 1994. The parasitic crustaceans of fishes from Sichuan Province. Journal of Southwest China Normal University (Natural Science) 19: 58–61. [In Chinese with English abstract]